

License Expires November 30, 20ls SHTS/-5

Indicates cupaik BAY Size, THP

aplac Horiz. Fpomire
cJplok vertical posi, the

Monopsiv/ Scaffaus feroming fund

$$
3 / 16^{n}=1-0^{n}
$$

\square
\square
\square

SECTION AN-N

- Ex. conc. Slab-or- quac.

General notes:

1. User/erector shall comply $\mathrm{w} /$ shoring and bracing manufacturer safety guidelines and all OSHA regulations regarding shoring.
2. Clamp all beams to beams/ u-heads/existing beams w/4-jbc or hd c-clamps, 1 each corner of each intersection
3. Contractor shall verify that existing subgrade below existing concrete slab on grade can safely support a uniform pressure of 2000 pounds per square foot at all shoring sill locations.
4. Tighten all shoring to ensure that dead load of existing structure is sustained before proceeding $\mathrm{w} /$ demolition work.
5. Shoring is designed to support vertical downward gravity loads only. Design for uplift or overall lateral load resistance of existing structure shall be by others.
6. Secure all base plates to timber/wood sills or blocking using 4-16d nails each plate.
7. Adjust/skew shoring frames as required to keep all shoring beams centered over each post or frame leg.
8. All wood joists/blocking shall be douglas fir larch no. 1 or equivalent.
9. All 2×10 plank/sills shall be scaffold grade.
10. contrmaton sharu Vermify That Existare sgrusegure con support canipry/sporanc loans.

OHERE ARPORT
bes

$$
\text { Proj* } 16248
$$

Monorbul Muenin powion coles
beskur loms: UNITBOINER $\because \quad 35000$ lka,

W10 $\times 50$ BERMM MODEL:
VEE $\left(\frac{35000^{*}}{4}\right) \times 1.25=10,937^{*} \rightarrow$ USE 12^{k} for DÉSuN

$$
m=\rho_{n}=12^{k}\left(3^{\prime}\right)=36^{k}
$$

$$
\text { Fon } w_{16 \times 50} \mathrm{~m}_{f}=125^{1 \mathrm{~K}} e L_{b}=15^{1}
$$

chekp Sitringer Bans.
(3) $w s \times 10, Z^{\prime}$ spmi, $m=\frac{p_{2}}{4}=\frac{12^{k}\left(7^{\prime}\right)}{4}=21^{1 k}$

For $(3) 5 i \times 10=L_{b}=7^{\prime} \rightarrow m_{r}=3\left(11^{k}\right)=33^{\mathrm{k}}$
$(2) \sim \sim_{0} \times 10,5^{\prime}$ span, $m=\frac{P}{4}=\frac{12^{k}\left(5^{\prime}\right)}{4}=15^{\mathrm{k}}$

$$
\begin{equation*}
\text { For }(n) \sim 10 \times 10 \text { e } L_{b}=5^{1} \rightarrow M_{r}=2\left(13.5^{k}\right)=27^{1 k}>15^{k} \tag{0}
\end{equation*}
$$

CHEAR Har BMys (2) wixio, 5'spur iny ABOJE, sAme, OKR

CHECK Cuplok post.

$$
P_{\max +}(f \text { OT })=\frac{12^{k}}{2}=\operatorname{Cos}^{k}
$$

For caplok posi brwễb < 3'-3' VEntikor.

$$
\begin{equation*}
P_{\text {ullow }}=11.50^{\mathrm{K}}>6.0^{k} \tag{0}
\end{equation*}
$$

Monorbul Muenin powion coles
beskur loms: UNITBOINER $\because \quad 35000$ lka,

W10 $\times 50$ BERMM MODEL:
VEE $\left(\frac{35000^{*}}{4}\right) \times 1.25=10,937^{*} \rightarrow$ USE 12^{k} for DÉSuN

$$
m=\rho_{n}=12^{k}\left(3^{\prime}\right)=36^{k}
$$

$$
\text { Fon } w_{16 \times 50} \mathrm{~m}_{f}=125^{1 \mathrm{~K}} e L_{b}=15^{1}
$$

chekp Sitringer Bans.
(3) $w s \times 10, Z^{\prime}$ spmi, $m=\frac{p_{2}}{4}=\frac{12^{k}\left(7^{\prime}\right)}{4}=21^{1 k}$

For $(3) 5 i \times 10=L_{b}=7^{\prime} \rightarrow m_{r}=3\left(11^{k}\right)=33^{\mathrm{k}}$
$(2) \sim \sim_{0} \times 10,5^{\prime}$ span, $m=\frac{P}{4}=\frac{12^{k}\left(5^{\prime}\right)}{4}=15^{\mathrm{k}}$

$$
\begin{equation*}
\text { For }(n) \sim 10 \times 10 \text { e } L_{b}=5^{1} \rightarrow M_{r}=2\left(13.5^{k}\right)=27^{1 k}>15^{k} \tag{0}
\end{equation*}
$$

CHEAR Har BMys (2) wixio, 5'spur iny ABOJE, sAme, OKR

CHECK Cuplok post.

$$
P_{\max +}(f \text { OT })=\frac{12^{k}}{2}=\operatorname{Cos}^{k}
$$

For caplok posi brwễb < 3'-3' VEntikor.

$$
\begin{equation*}
P_{\text {ullow }}=11.50^{\mathrm{K}}>6.0^{k} \tag{0}
\end{equation*}
$$

